

PG-602

II Semester M.Sc. Degree Examination, July 2017 **CHEMISTRY**

C202 : Organic Chemistry - II (NS-2010 - 11 Scheme) (Repeaters)

Time: 3 Hours Max. Marks: 80

Instructions: Answer question No. 1 and any five of the remaining questions.

1. Answer any ten of the following:

 $(10 \times 2 = 20)$

- a) What is ipso reaction? Give an example.
- b) Complete the following reaction and outline its mechanism:

c) Predict the product with mechanism in the following reaction:

d) Propose a mechanism for the following reaction:

- e) What are the conditions that favour EICB mechanism in an elimination reaction? Illustrate with example.
- f) Give any one biological function of Vitamin B₁.
- g) Explain Neber rearrangement with an example.

h) Complete the following reaction:

- i) Cis-2, 3-Diphenyl-2-butene on hydrogenation gives meso-compound where as trans-derivative gives racemic mixture. Explain.
- j) Cyclopropane is an intermediate in Favorskii rearrangement. Justify with adequate evidence.
- k) Outline the steps involved in the synthesis of following compound using Beckman rearrangement.

- I) What are cyclodextrins ? Draw the structure of α cyclodextrin.
- 2. a) Discuss the effect of electron donating and electron withdrawing substituents governing the orientation in aromatic electrophilic substitution reactions.
 - b) Outline the mechanism of Vilsmeir-Haack reaction.
 - c) Give the product formed with mechanism of the following:

$$i) \bigwedge_{H} + PhN = N \longrightarrow 3$$

ii)
$$NO_2$$

$$NaOMe \rightarrow ?$$

$$H^{\oplus}$$

$$OH$$

$$(5+3+4=12)$$

- 3. a) Arrange the following olefins in the increasing order of reactivity towards Br₂ in ACOH at 25°C. Justify your answer PhCH=CHPh, PhCH=CH₂, CH₂ = CHCH₂CI, CH₂ = CHCH₂Br.
 - b) Give the mechanism and justify the stereochemical outcome in the following:

c) Account for the product obtained in the following:

- 4. a) What is the effect of substrate, attacking base and leaving group on the reactivity of E1 and E2 mechanisms?
 - b) How do you convert Vitamin A_1 in to A_2 ?
 - c) Describe the steps involved in the synthesis of Vitamin-C. (6+3+3=12)
- 5. How do you effect the following conversions? Propose mechanisms.

- 6. a) Sketch the mechanisms of $\mathbf{S}_{N}\mathbf{Ar}$ and $\mathbf{S}_{RN}\mathbf{1}$ reactions.
 - b) Write an account on the function of molecular clefts.
 - c) Discuss the mechanism and synthetic utility of Wittig reaction. (4+4+4=12)
- 7. a) Write a brief account on the following:
 - i) Baeyer Villiger oxidation
 - ii) Benzidine rearrangement.
 - b) Outline the synthesis of folic acid.
 - c) Give an account on the synthetic utility of NaBH₄ in organic synthesis.

(6+3+3=12)